A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework on unstructured meshes
نویسندگان
چکیده
In this paper, we adapt a simple weighted essentially non-oscillatory (WENO) limiter, originally designed for discontinuous Galerkin (DG) schemes on two-dimensional unstructured triangular meshes [35], to the correction procedure via reconstruction (CPR) framework for solving nonlinear hyperbolic conservation laws on two-dimensional unstructured triangular meshes with straight edges or curved edges. This is an extension of our earlier work [4] in which the WENO limiter was designed for the CPR framework on regular meshes. The objective of this simple WENO limiter is to simultaneously maintain uniform high order accuracy of the CPR framework in smooth regions and control spurious numerical oscillations near discontinuities. The WENO limiter we adopt in this paper uses information only from the target cell and its immediate neighbors. Hence, it is particularly simple to implement and will not harm the conservativeness and compactness of the CPR framework. Since the CPR framework with this WENO limiter does not in general satisfy the positivity preserving property, we also extend the positivitypreserving limiters [32, 23] to the CPR framework. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good behavior of this procedure.
منابع مشابه
A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework
In this paper, we adapt a simple weighted essentially non-oscillatory (WENO) limiter, originally designed for discontinuous Galerkin (DG) schemes [42], to the correction procedure via reconstruction (CPR) framework for solving conservation laws. The objective of this simple WENO limiter is to simultaneously maintain uniform high order accuracy of the CPR framework in smooth regions and control ...
متن کاملWLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes
ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...
متن کاملA simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods
In this paper, we investigate a simple limiter using weighted essentially non-oscillatory (WENO) methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving conservation laws, with the goal of obtaining a robust and high order limiting procedure to simultaneously achieve uniform high order accuracy and sharp, non-oscillatory shock transitions. The idea of this limiter is to re...
متن کاملRunge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes
In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...
متن کاملA Robust Reconstruction for Unstructured WENO Schemes
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with d...
متن کامل